目前各大摄影论坛都充斥着关于数码相机与传统相机孰优孰劣的各种争论,双方引经据典争论得面红耳赤难分高低。其实不论是传统的胶片相机还是新兴的数码相机不同的只不过是成像的载体,最终我们都要获得一张足以满足人们审美需求或者实用要求的照片而已,况且一张照片的成败关键是其内容,成像质量只不过是相对次要的一个方面。
为了使大家对数码和传统有更深入细致的了解,下面从两大方面详细阐述数码与传统的分别和优缺点:
成像原理的不同和优缺点
使用方式的不同和优缺点
简单而言,传统胶片的成像过程是基于光化学理论,数码的成像过程则是基于光电子学理论,下面我们再来一同细看。
胶片的成像原理:
每种胶片(包括彩色胶片)都包括两个基本组成部分:一个单层的或多层的感光乳剂层、一个感光乳剂层的支持体——片基。乳剂是由对光敏感的微细颗粒悬浮在明胶介质中而成。胶片上的明胶与某些食品所用明胶类似。
在明胶中悬浮着的光敏物质是卤化银颗粒。这种颗粒如此微细,只有在高倍显微镜下才能观察到。在1平方英寸通常的感光胶片乳剂中,卤化银晶体的含量约达400亿个之多!
卤化银晶体具有一经曝光其结构就发生变化的特性。这一化学性能变化的机理对我们并非重要,其变化的终结效果才是最重要的。这一变化是怎样产生的呢?当你拍摄时,光线通过相机的镜头射到胶片的乳剂层上,当光线到达卤化银晶体时,这些晶体发生结构性变化,并与邻近也受到光线照射的卤化银晶体相互聚结起来。
这种因卤化银晶体聚结而形成的团块仍然是极其微细的。乳剂层接受到的光量愈多,就有更多的晶体聚结在一起,光量愈少,晶体的变化和聚结也愈少。没有光落到的乳剂上也就没有晶体的变化和聚结。这就是说不同强度的光照射到胶片上,胶片乳剂层的微观领域就有不同数量的晶体发生结构变化和相互聚结。
胶片一经曝光,立即产生潜影——一种看不见的影像。必须将胶片进行显影操做才能使潜影转化为可见的牢固影像。当胶片显影,结构已发生变化的卤化银晶体便转化为黑色金属银颗粒的聚结体,从而产生影像——负像。胶片上那些没有感光的,也就是没有发生结构变化的晶体即被一种称作定影剂的化学品洗去,使这些部分呈现浅灰或透明。结果是负像上黑暗(厚的)部分就是曝光较多部分;明亮(薄的)部分就是曝光较少部分;全透明部分就是没有受到光照射的部分。这就是黑白胶片记录影像的基本过程。
彩色胶片有三层感光乳剂层,在这些乳剂层里还分别含有不同的能够生成染料的有机化合物,叫做彩色偶合剂(成色剂)。它们本身是无色的,但在彩色显影时能与彩色显影剂的氧化物耦合成为有色的染料。对于负性胶片,上层盲色乳剂里所含的偶合剂在彩色显影时形成黄色,中层形成品红色,下层形成青色,这就是我们得到的经过冲洗的彩色胶片。通过扩印或放大再把影像投射到照相纸上或者是反转片的反转冲洗,胶片上层的黄色转变为它的补色蓝色,中间一层转为绿色,下层则转为红色,我们就得到了与自然状态一样的彩色照片或者透明的反转片。这就是彩色胶片记录影像的基本过程。
数码的成像原理:
目前数码感光器件分为CCD和CMOS两大类。CCD称为电荷耦合半导体器件,CMOS称为互补型金属氧化物场效应器件,它们都是半导体器件,其工作原理没有本质的区别。它们在数码照相机中的作用是把影像的光信号转变为电信号并分别寄存起来,在外加扫描信号的作用下传输出去,最后经过各种运算转换为图像的数码文件。
光线透过镜头射入半导体,光子被半导体吸收,这样光学图像在感光单元上转换成为与光学图像中各相应像素上光照成正比的电荷包,每个电荷包就是图像的亮度信息,最后通过暂存区和信号读出寄存器把信号通过中央处理器进行信号处理后传输到存储器。一个好的影像传感器如果能够使得感光单元占据更多的比表面积,那么它的效率越高,再生像的准确度也越高。
数码图像传感器利用感光单元来接受光线,但对光线的色彩没有识别能力。那怎么让它感知色彩呢,现在的常规做法是在每个图像传感器单元的前面加上滤色镜,这又可以分为原色RGB滤镜和补色CMYG滤镜两种,这种技术被称为马赛克技术(Mosaic)。
下面以RGB原色滤镜为例,红色滤色镜只能通过红色成分光线而拒绝其它颜色光线通过,同样蓝色滤色镜只能通过蓝色成分光线。这样红、绿、蓝滤镜有规律的严格排列,通过这种方式在所有感光单元前都加上滤色镜。再编制一个工作程序,使得照相机CPU中央处理器知道每个感光单元对应的位置,这样每个感光单元就有了一个加权排列序号,输出的信号中不但包括色彩信息和亮度信息,同时还包括位置信息。最后所有这些加权图像信息汇总后由图像处理引擎运算得出一个复原图像,也是我们最后获得的照片信息。这个色彩计算过程就是我们所谓的插值,可以说数码相机的色彩还原完全是根据设计者的软件编制方法把原始景物的色彩信息计算出来的。
由胶片和数码成像的原理可以看出,胶片是通过光化学反应产生潜像,这个潜像的生成不存在人为的干扰因素,也就是说过程比较自然。而数码成像过程,插值算法是关键的一环,所以随着算法设计的不断进步,数码的拟真度会越来越高(当然感光器件本身的进步也同样重要)。就和其他领域模拟和数码的更迭一样,当数码精细到一定程度以后(超过人所能分辨的界限),就可以认为是高保真地还原了。
但Mosaic技术存在以下的缺陷:分辨率无法持续提高,辨色能力差以及制作成本高昂。由于色彩是依靠插值计算出来的,所以对于十分细微的色彩变化,容易出现丢失现象,这就是数码图像看起来层次不够细腻、色彩不够厚重的原因之一。此外,由于数码感光原件是规则排列的,这就存在一个空间频率问题,当像素的空间频率与影像中条纹的空间频率接近的时候,就会产生摩尔纹。目前缓解的办法是在感光元件的前面安装低通滤波器滤除影像中较高空间频率部分,但这样又会导致图像锐度的降低。而胶片的感光颗粒是无规则排列的,也就没有固定的空间频率,所以也就不会出现摩尔纹。
再让我们来比较一下它们的响应曲线:
我们可以看到胶片的线性区相对稍稍短一点,但是特性曲线的肩部趋缓,有个拖了个长长尾巴的非线性区,表明对高光有一定的抑制——即可部份表现高光处的细节。而CCD的线性工作区稍微长一点,但是截止得很突然,一冲就上去了,毫无抑制能力,见到高光就是死白——这是与胶片的最大不同。
如果要精确测量光强,我们希望感光材料工作在线性区,这个用途使用CCD好。但从摄影的角度来说,胶片确实比CCD好,好就好在那个长长的非线性区能够保存大量亮部的细节,虽然这些细节反应出来的明暗其实是有误差的。
数字相机一旦过曝,信号就立刻饱和,而且是没有任何余地的那种饱和,因此数码高光部表现比彩负要差,非常容易过冲死白。而是胶片过曝一点,还是有细节存在,虽然响应已经不是线性的了,但是有总比没有的强,负片高光明显有缓冲,即使过曝无细节也不至於全脱色。
实际拍摄效果对比: